Federal Communications Commission

§90.357 Frequencies for LMS systems in the 902–928 MHz band.

(a) Multilateration LMS systems will be authorized on the following LMS sub-bands:

LMS sub-band	Forward link ¹
904.000–909.750 MHz	927.750–928.000 MHz.
919.750–921.750 MHz. ²	927.500–927.750 MHz.
921.750–927.250 MHz	927.250–927.500 MHz.

¹Forward links for LMS systems may also be contained within the LMS sub-band. However, the maximum allowable power in these sub-bands is 30 Watts ERP in accordance with § 90.205(I).

² The frequency band 919.750–921.750 MHz is shared coequally between multilateration and non-multilateration LMS systems.

(b) Non-multilateriation LMS systems will be authorized in the following frequency bands:

LMS Sub-band¹

902.000-904.000 MHz	
909.750–921.750 MHz	

¹Applicants for non-multilateration LMS systems should request only the minimum amount of bandwidth necessary to meet their operational needs.

[72 FR 35198, June 27, 2007, as amended at 75 FR 19284, Apr. 14, 2010]

§90.359 Field strength limits for EA-licensed LMS systems.

EA-licensed multilateration systems shall limit the field strength of signals transmitted from their base stations to 47 dBuV/m at their EA boundary.

[62 FR 52044, Oct. 6, 1997]

§90.361 Interference from part 15 and Amateur operations.

Operations authorized under parts 15 and 97 of this chapter may not cause harmful interference to LMS systems in the 902–928 MHz band. These operations will not be considered to be causing harmful interference to a multilateration LMS system operating in one of the three EA sub-bands (see §90.357(a)) if they are non-video links operating in accordance with the provisions of parts 15 or 97 of this chapter and at least one of the following conditions are met:

(a) It is a field disturbance sensor operating under §15.245 of this chapter and it is not operating in the 904–909.750 or 919.750–928.000 MHz sub-bands; or

(b) It does not employ an outdoor antenna; or (c) If it does employ an outdoor antenna, then if:

(1) The directional gain of the antenna does not exceed 6 dBi, or if the directional gain of the antenna exceeds 6 dBi, it reduces its transmitter output power below 1 watt by the proportional amount that the directional gain of the antenna exceeds 6 dBi; and

(2) Either:

(i) The antenna is 5 meters or less in height above ground; or

(ii) The antenna is more than 5 meters in height above ground but less than or equal to 15 meters in height above ground and either:

(A) Adjusts its transmitter output power below 1 watt by 20 log (h/5) dB, where h is the height above ground of the antenna in meters; or

(B) Is providing the final link for communications of entities eligible under subpart B or C of this part, or is providing the final link for communications of health care providers that serve rural areas, elementary schools, secondary schools or libraries.

 $[60\ {\rm FR}\ 15253,\ {\rm Mar.}\ 23,\ 1995,\ as\ amended\ at\ 62\ {\rm FR}\ 52044,\ {\rm Oct.}\ 6,\ 1997]$

§90.363 Grandfathering provisions for existing AVM licensees.

(a) These provisions authorize grandfathered operation by automatic vehicle monitoring (AVM) systems licensed on or before February 3, 1995. To attain grandfathered status for their stations. existing multilateration AVM licensees must file, on or before May 22, 1995, applications to modify their station licenses to comply with the band plan shown in §90.357(a). These applications to modify mustidentify the multilateration sub-band or sub-bands in which the applicants intend to operate their LMS system stations, once their applications to modify have been authorized. The application to modify a license to comply with the band plan shown in §90.357(a) may also include a modification to specify an alternate site, so long as the alternate site is 2 kilometers or less from the site specified in the original license.

(b) When existing multilateration AVM licensees file applications to modify, as specified in paragraph (a) of this section, they *must* certify that either:

47 CFR Ch. I (10-1-20 Edition)

(1) The stations that compose their AVM system were constructed and placed in operation in accordance with §90.155(e) on or before February 3, 1995; or

(2) The stations were not constructed and placed in operation in accordance with §90.155(e) on or before February 3, 1995.

(c) Multilateration AVM systems that were constructed and placed in operation on or before February 3, 1995 will be given until April 1, 1998 to convert to the spectrum identified in their LMS system license. Such licensees may continue to operate their systems during this period. Licensees of multilateration AVM constructed and operational systems that do not file applications to modify on or before May 22, 1995, will be permitted to continue operations under the provisions of former §90.239 until April 1, 1998 or the end of their original license term, whichever occurs first. at which time such licenses will cancel automatically and will not be renewed.

(d) Multilateration AVM licensees for stations that were not constructed and placed in operation on or before February 3, 1995 must construct their LMS systems and place them in operation on the spectrum identified in their LMS system license on or before September 1, 1996, or their licenses will cancel automatically (see Section 90.155 (e)). Also, these licenses will cancel automatically on July 1, 1996 unless timely modification applications are filed on or before this date (see paragraph (a) of this section).

(e) Non-multilateration systems licensed in spectrum other than the 902.00-904.00 and 909.75-921.75 MHz bands must modify their licenses by April 1, 1998 to specify operation solely in the bands provided in §90.357(b) for nonmultilateration systems and to operate their systems consistently with the provisions of §90.353.

[60 FR 15253, Mar. 23, 1995, as amended at 61 FR 18986, Apr. 30, 1996]

§90.365 Partitioned licenses and disaggregated spectrum.

(a) *Eligibility*. (1) Party seeking approval for partitioning and disaggregation shall request an author-

ization pursuant to \$1.948 of this chapter.

Multilateration LMS licensees (2)may apply to partition their licensed geographic service area or disaggregate their licensed spectrum at any time following the grant of their licenses. Multilateration LMS licensees may partition or disaggregate to any party that is also eligible to be a multilateration LMS licensee. Partitioning is permitted along any service area defined by the parties, and spectrum may be disaggregated in any amount. The Commission will also consider requests for partial assignment of licenses that propose combinations of partitioning and disaggregation.

(b) Partitioning. In the case of partitioning, applicants and licensees must file FCC Form 603 pursuant to §1.948 and list the partitioned service area on a schedule to the application. The geographic coordinates must be specified in degrees, minutes, and seconds to the nearest second of latitude and longitude and must be based upon the 1983 North American Datum (NAD83).

(c) *License term.* The license term for a partitioned license area, and for disaggregated spectrum shall be the remainder of the original licensee's license term.

[63 FR 40663, July 30, 1998, as amended at 63 FR 68966, Dec. 14, 1998; 82 FR 41548, Sept. 1, 2017]

REGULATIONS GOVERNING THE LICENSING AND USE OF FREQUENCIES IN THE 5850– 5925 MHZ BAND FOR DEDICATED SHORT-RANGE COMMUNICATIONS SERV-ICE (DSRCS)

§90.371 Dedicated short range communications service.

(a) These provisions pertain to systems in the 5850–5925 MHz band for Dedicated Short-Range Communications Service (DSRCS). DSRCS systems use radio techniques to transfer data over short distances between roadside and mobile units, between mobile units, and between portable and mobile units to perform operations related to the improvement of traffic flow, traffic safety, and other intelligent transportation service applications in a variety of environments. DSRCS systems may also transmit status and instructional