Federal Communications Commission

(i) Up to 30 meters, the AFC system must use the free space path-loss model.

(ii) More than 30 meters and up to and including one kilometer, the AFC system must use the Wireless World Initiative New Radio phase II (WIN-NER II) model. The AFC system must use site-specific information, including buildings and terrain data, for determining the line-of-sight/non-line-ofsight path component in the WINNER II model, where such data is available. For evaluating paths where such data is not available, the AFC system must use a probabilistic model combining the line-of-sight path and non-line-ofsight path into a single path-loss as follows:

 $\begin{array}{l} Path-loss \ (L) = \Sigma_i \ P(i) \ \ast \ L_i = P_{LOS} \ \ast \ L_{LOS} \\ + \ P_{NLOS} \ \ast \ L_{NLOS}, \end{array}$

where P_{LOS} is the probability of line-ofsight, L_{LOS} is the line-of-sight path loss, P_{NLOS} is the probability of nonline-of sight, L_{NLOS} is the non-line-ofsight path loss, and L is the combined path loss. The WINNER II path loss models include a formula to determine P_{LOS} as a function of antenna heights and distance. P_{NLOS} is equal to $(1-P_{LOS})$. In all cases, the AFC system will use the correct WINNER II parameters to match the morphology of the path between a standard power access point and a fixed microwave receiver (*i.e.*, Urban, Suburban, or Rural).

(iii) More than one kilometer, the AFC system must use Irregular Terrain Model (ITM) combined with the appropriate clutter model. To account for the effects of clutter, such as buildings and foliage, that the AFC system must combine the ITM with the ITU-R P.2108-0 (06/2017) clutter model for urban and suburban environments and the ITU-R P.452-16 (07/2015) clutter model for rural environments. The AFC system should use the most appropriate clutter category for the local morphology when using ITU-R P.452-16. However, if detailed local information is not available, the "Village Centre" clutter category should be used. The AFC system must use 1 arc-second digital elevation terrain data and, for locations where such data is not available, the most granular available digital elevation terrain data.

(2) Interference Protection Criteria:

(i) The AFC system must use -6 dB L/N as the interference protection criteria in determining the size of the cochannel exclusion zone where I (interference) is the co-channel signal from the standard power access point or fixed client device at the fixed microwave service receiver, and N (noise) is background noise level at the fixed microwave service receiver.

(ii) The AFC system must use -6 dB I/N as the interference protection criteria in determining the size of the adjacent channel exclusion zone, where I (interference) is the signal from the standard power access point or fixed client device's out of channel emissions at the fixed microwave service receiver and N (noise) is background noise level at the fixed microwave service receiver. The adjacent channel exclusion zone must be calculated based on the emissions requirements of paragraph (b)(6) of this section.

(m) Incumbent Protection by AFC system: Radio Astronomy Services. The AFC system must enforce an exclusion zones to the following radio observatories that observe between 6650–6675.2 MHz: Arecibo Observatory, the Green Bank Observatory, the Very Large Array (VLA), the 10 Stations of the Very Long Baseline Array (VLBA), the Owens Valley Radio Observatory, and the Allen Telescope Array. The exclusion zone sizes are based on the radio line-of-sight and determined using ⁴/₃ earth curvature and the following formula:

 $dkm_{los} = 4.12 * (sqrt(Htx) + sqrt(Hrx)),$

where Htx is the height of the unlicensed standard power access point or fixed client device and Hrx is the height of the radio astronomy antenna in meters above ground level. Coordinate locations of the radio observatories are listed in section 2.106, notes US 131 and US 385 of this part.

(n) Incumbent Protection by AFC system: Fixed-Satellite Services. Standard power access points and fixed client devices located outdoors must limit their maximum e.i.r.p. at any elevation angle above 30 degrees as measured

47 CFR Ch. I (10–1–20 Edition)

from the horizon to 21 dBm (125 mW) to protect fixed satellite services.

[63 FR 40836, July 31, 1998, as amended at 69
FR 2687, Jan. 20, 2004; 69 FR 54036, Sept. 7, 2004; 79 FR 24579, May 1, 2014; 79 FR 56988, Sept. 24, 2014; 79 FR 76903, Dec. 23, 2014; 81 FR 19901, Apr. 6, 2016; 85 FR 18149, Apr. 1, 2020; 85
FR 31411, May 26, 2020]

Subpart F—Ultra-Wideband Operation

SOURCE: 67 FR 34856, May 16, 2002, unless otherwise noted.

§15.501 Scope.

This subpart sets out the regulations for unlicensed ultra-wideband transmission systems.

§15.503 Definitions.

(a) UWB bandwidth. For the purpose of this subpart, the UWB bandwidth is the frequency band bounded by the points that are 10 dB below the highest radiated emission, as based on the complete transmission system including the antenna. The upper boundary is designated f_H and the lower boundary is designated f_L . The frequency at which the highest radiated emission occurs is designated f_M .

(b) Center frequency. The center frequency, f_C , equals $(f_H + f_L)/2$.

(c) Fractional bandwidth. The fractional bandwidth equals $2(f_H - f_L)/(f_H + f_L)$.

(d) Ultra-wideband (UWB) transmitter. An intentional radiator that, at any point in time, has a fractional bandwidth equal to or greater than 0.20 or has a UWB bandwidth equal to or greater than 500 MHz, regardless of the fractional bandwidth.

(e) Imaging system. A general category consisting of ground penetrating radar systems, medical imaging systems, wall imaging systems through-wall imaging systems and surveillance systems. As used in this subpart, imaging systems do not include systems designed to detect the location of tags or systems used to transfer voice or data information.

(f) Ground penetrating radar (GPR) system. A field disturbance sensor that is designed to operate only when in contact with, or within one meter of, the ground for the purpose of detecting or obtaining the images of buried objects or determining the physical properties within the ground. The energy from the GPR is intentionally directed down into the ground for this purpose.

(g) Medical imaging system. A field disturbance sensor that is designed to detect the location or movement of objects within the body of a person or animal.

(h) Wall imaging system. A field disturbance sensor that is designed to detect the location of objects contained within a "wall" or to determine the physical properties within the "wall." The "wall" is a concrete structure, the side of a bridge, the wall of a mine or another physical structure that is dense enough and thick enough to absorb the majority of the signal transmitted by the imaging system. This category of equipment does not include products such as "stud locators" that are designed to locate objects behind gypsum, plaster or similar walls that are not capable of absorbing the transmitted signal

(i) Through-wall imaging system. A field disturbance sensor that is designed to detect the location or movement of persons or objects that are located on the other side of an opaque structure such as a wall or a ceiling. This category of equipment may include products such as "stud locators" that are designed to locate objects behind gypsum, plaster or similar walls that are not thick enough or dense enough to absorb the transmitted signal.

(j) *Surveillance system*. A field disturbance sensor used to establish a stationary RF perimeter field that is used for security purposes to detect the intrusion of persons or objects.

(k) *EIRP*. Equivalent isotropically radiated power, *i.e.*, the product of the power supplied to the antenna and the antenna gain in a given direction relative to an isotropic antenna. The EIRP, in terms of dBm, can be converted to a field strength, in dBuV/m at 3 meters, by adding 95.2. As used in this subpart, EIRP refers to the highest signal strength measured in any direction and at any frequency from the UWB device, as tested in accordance with the procedures specified in §15.31(a) and 15.523 of this chapter.

§ 15.501