radiated emissions are maximized, including in the main beam of the LPR antenna.

[54 FR 17714, Apr. 25, 1989, as amended at 56 FR 13083, Mar. 29, 1991; 57 FR 24990, June 12, 1992; 57 FR 33448, July 29, 1992; 58 FR 37430, July 12, 1993; 58 FR 51249, Oct. 1, 1993; 61 FR 14502, Apr. 2, 1996; 62 FR 41881, Aug. 4, 1997; 62 FR 45333, Aug. 27, 1997; 63 FR 36602, July 7, 1998; 63 FR 42278, Aug. 7, 1998; 65 FR 58466, Sept. 29, 2000; 68 FR 68545, Dec. 9, 2003; 69 FR 54034, Sept. 7, 2004; 70 FR 1373, Jan. 7, 2005; 76 FR 71908, Nov. 21, 2011; 77 FR 4913, Feb. 1, 2012; 77 FR 43013, July 23, 2012; 79 FR 12677, Mar. 6, 2014; 80 FR 2838, Jan. 21, 2015; 80 FR 33447, June 12, 2015]

## § 15.32 Test procedures for CPU boards and computer power supplies.

Power supplies and CPU boards used with personal computers and for which separate authorizations are required to be obtained shall be tested as follows:

- (a) CPU boards shall be tested as follows:
- (1) Testing for radiated emissions shall be performed with the CPU board installed in a typical enclosure but with the enclosure's cover removed so that the internal circuitry is exposed at the top and on at least two sides. Additional components, including a power supply, peripheral devices, and subassemblies, shall be added, as needed, to result in a complete personal computer system. If the oscillator and the microprocessor circuits are contained on separate circuit boards, both boards, typical of the combination that would normally be employed, must be used in the test. Testing shall be in accordance with the procedures specified in § 15.31.
- (i) Under these test conditions, the system under test shall not exceed the radiated emission limits specified in §15.109 by more than 6 dB. Emissions greater than 6 dB that can be identified and documented to originate from a component(s) other than the CPU board being tested, may be dismissed.
- (ii) Unless the test in paragraph (a)(1)(i) of this section demonstrates compliance with the limits in §15.109, a second test shall be performed using the same configuration described above but with the cover installed on the enclosure. Testing shall be in accordance with the procedures specified in §15.31.

Under these test conditions, the system under test shall not exceed the radiated emission limits specified in \$15,100

- (2) In lieu of the procedure in (a)(1) of this section, CPU boards may be tested to demonstrate compliance with the limits in §15.109 using a specified enclosure with the cover installed. Testing for radiated emissions shall be performed with the CPU board installed in a typical system configuration. Additional components, including a power supply, peripheral devices, and subassemblies, shall be added, as needed, to result in a complete personal computer system. If the oscillator and the microprocessor circuits are contained on separate circuit boards, both boards, typical of the combination that would normally be employed, must be used in the test. Testing shall be in accordance with the procedures specified in §15.31. Under this procedure, CPU boards that comply with the limits in §15.109 must be marketed together with the specific enclosure used for the test.
- (3) The test demonstrating compliance with the AC power line conducted limits specified in §15.107 shall be performed in accordance with the procedures specified in §15.31 using an enclosure, peripherals, power supply and subassemblies that are typical of the type with which the CPU board under test would normally be employed.
- (b) The power supply shall be tested installed in an enclosure that is typical of the type within which it would normally be installed. Additional components, including peripheral devices, a CPU board, and subassemblies, shall be added, as needed, to result in a complete personal computer system. Testing shall be in accordance with the procedures specified in §15.31 and must demonstrate compliance with all of the standards contained in this part.

[61 FR 31048, June 19, 1996, as amended at 62 FR 41881, Aug. 4, 1997]

## §15.33 Frequency range of radiated measurements.

(a) For an intentional radiator, the spectrum shall be investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to at least the frequency shown in this paragraph:

## § 15.33

- (1) If the intentional radiator operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.
- (2) If the intentional radiator operates at or above 10 GHz and below 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 100 GHz, whichever is lower.
- (3) If the intentional radiator operates at or above 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 200 GHz, whichever is lower, unless specified otherwise elsewhere in the rules.
- (4) If the intentional radiator contains a digital device, regardless of whether this digital device controls the functions of the intentional radiator or the digital device is used for additional control or function purposes other than to enable the operation of the intentional radiator, the frequency range shall be investigated up to the range specified in paragraphs (a)(1) through (a)(3) of this section or the range applicable to the digital device, as shown in paragraph (b)(1) of this section, whichever is the higher frequency range of investigation.
  - (b) For unintentional radiators:
- (1) Except as otherwise indicated in paragraphs (b)(2) or (b)(3) of this section, for an unintentional radiator, including a digital device, the spectrum shall be investigated from the lowest radio frequency signal generated or used in the device, without going below the lowest frequency for which a radiated emission limit is specified, up to the frequency shown in the following table:

|                                                                                                           | I                                               |
|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| Highest frequency generated<br>or used in the device or on<br>which the device operates or<br>tunes (MHz) | Upper frequency of measure-<br>ment range (MHz) |
| Below 1.705                                                                                               | 30.                                             |
| 1.705-108                                                                                                 | 1000.                                           |
| 108-500                                                                                                   | 2000.                                           |
| 500-1000                                                                                                  | 5000.                                           |
| Above 1000                                                                                                | 5th harmonic of the highest                     |
|                                                                                                           | frequency or 40 GHz,                            |
|                                                                                                           | whichover is lower                              |

(2) A unintentional radiator, excluding a digital device, in which the highest frequency generated in the device, the highest frequency used in the device and the highest frequency on which the device operates or tunes are

less than 30 MHz and which, in accordance with §15.109, is required to comply with standards on the level of radiated emissions within the frequency range 9 kHz to 30 MHz, such as a CB receiver or a device designed to conduct its radio frequency emissions via connecting wires or cables, e.g., a carrier current system not intended to radiate, shall be investigated from the lowest radio frequency generated or used in the device, without going below 9 kHz (25 MHz for CB receivers), up to the frequency shown in the following table. If the unintentional radiator contains a digital device, the upper frequency to be investigated shall be that shown in the table below or in the table in paragraph (b)(1) of this section, as based on both the highest frequency generated and the highest frequency used in the digital device, whichever range is high-

| Highest frequency generated or used in the device or on which the device operates or tunes (MHz) | Upper frequency of measurement range (MHz) |
|--------------------------------------------------------------------------------------------------|--------------------------------------------|
| Below 1.705                                                                                      | 30                                         |
| 1.705-10                                                                                         | 400                                        |
| 10-30                                                                                            | 500                                        |

- (3) Except for a CB receiver, a receiver employing superheterodyne techniques shall be investigated from 30 MHz up to at least the second harmonic of the highest local oscillator frequency generated in the device. If such receiver is controlled by a digital device, the frequency range shall be investigated up to the higher of the second harmonic of the highest local oscillator frequency generated in the device or the upper frequency of the measurement range specified for the digital device in paragraph (b)(1) of this section.
- (c) The above specified frequency ranges of measurements apply to the measurement of radiated emissions and, in the case of receivers, the measurement to demonstrate compliance with the antenna conduction limits specified in §15.111. The frequency range of measurements for AC power line conducted limits is specified in §15.107 and 15.207 and applies to all equipment subject to those regulations. In some cases, depending on the frequency(ies) generated and used by

the equipment, only signals conducted onto the AC power lines are required to be measured.

(d) Particular attention should be paid to harmonics and subharmonics of the fundamental frequency as well as to those frequencies removed from the fundamental by multiples of the oscillator frequency. Radiation at the frequencies of multiplier states should also be checked.

[54 FR 17714, Apr. 25, 1989, as amended at 61 FR 14502, Apr. 2, 1996; 63 FR 42278, Aug. 7, 1998]

## §15.35 Measurement detector functions and bandwidths.

The conducted and radiated emission limits shown in this part are based on the following, unless otherwise specified elsewhere in this part:

(a) On any frequency or frequencies below or equal to 1000 MHz, the limits shown are based on measuring equipment employing a CISPR quasi-peak detector function and related measurement bandwidths, unless otherwise specified. The specifications for the measuring instrument using the CISPR quasi-peak detector can be found in Publication 16 of the International Special Committee on Radio Interference (CISPR) of the International Electrotechnical Commission. As an alternative to CISPR quasi-peak measurements, the responsible party, at its option, may demonstrate compliance with the emission limits using measuring equipment employing a peak detector function, properly adjusted for such factors as pulse desensitization, as long as the same bandwidths as indicated for CISPR quasi-peak measurements are employed.

Note: For pulse modulated devices with a pulse-repetition frequency of 20 Hz or less and for which CISPR quasi-peak measurements are specified, compliance with the regulations shall be demonstrated using measuring equipment employing a peak detector function, properly adjusted for such factors as pulse desensitization, using the same measurement bandwidths that are indicated for CISPR quasi-peak measurements.

(b) Unless otherwise specified, on any frequency or frequencies above 1000 MHz, the radiated emission limits are based on the use of measurement instrumentation employing an average

detector function. Unless otherwise specified, measurements above 1000 MHz shall be performed using a minimum resolution bandwidth of 1 MHz. When average radiated emission measurements are specified in this part, including average emission measurements below 1000 MHz, there also is a limit on the peak level of the radio frequency emissions. Unless otherwise specified, e.g., see §§15.250, 15.252, 15.253(d), 15.255, 15.256, and 15.509 through 15.519 of this part, the limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device, e.g., the total peak power level. Note that the use of a pulse desensitization correction factor may be needed to determine the total peak emission level. The instruction manual or application note for the measurement instrument should be consulted for determining pulse desensitization factors, as necessary.

(c) Unless otherwise specified, e.g., §§ 15.255(b), and 15.256(1)(5), when the radiated emission limits are expressed in terms of the average value of the emission, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value. The exact method of calculating the average field strength shall be submitted with any application for certification or shall be retained in the measurement data file for equipment subject to notification or verification.

[54 FR 17714, Apr. 25, 1989, as amended at 56 FR 13083, Mar. 29, 1991; 61 FR 14502, Apr. 2, 1996; 63 FR 42279, Aug. 7, 1998; 67 FR 34855, May 16, 2002; 70 FR 6773, Feb. 9, 2005; 77 FR 48102, Aug. 13, 2012; 79 FR 12678, Mar. 6, 2014]