§90.305 Location of stations.

(a) The transmitter site(s) for base station(s), including mobile relay stations, shall be located not more than 80 km . (50 mi .) from the geographic center of the urbanized area listed in §90.303.
(b) Mobile units shall be operated within 48 km . (30 mi .) of their associated base station or stations. Such units may not be operated aboard aircraft in flight except as provided for in §90.315(i).
(c) Control stations must be located within the area of operation of the mobile units.
(d) Base and control stations shall be located a minimum of 1.6 km . (1 mi .) from local television stations operating on UHF TV channels separated by $2,3,4,5,7$, and 8 TV channels from the television channel in which the base station will operate.

§90.307 Protection criteria.

The tables and figures listed in $\S 90.309$ shall be used to determine the effective radiated power (ERP) and antenna height of the proposed land mobile base station and the ERP for the associated control station (control station antenna height shall not exceed 31 meters (100 feet) above average terrain (AAT)).
(a) Base stations operating on the frequencies available for land mobile use in any urbanized area and having an antenna height (AAT) less than 152 meters (500 feet) shall afford protection to co-channel and adjacent channel television stations in accordance with the values set out in tables A and E of §90.309, except for channel 15 in New York, NY, and Cleveland, OH, and channel 16 in Detroit, MI, where protection will be in accordance with the values set forth in tables B and E in 47 CFR 90.309.
(b) For base stations having antenna heights between 152 and 914 meters (500-3000 feet) above average terrain, the effective radiated power must be reduced below 1 kilowatt in accordance with the values shown in the power reduction graph in Figure A in §90.309, except for channel 15 in New York, NY, and Cleveland, OH , and channel 16 in Detroit, MI, where the effective radiated power must be reduced in accordance with Figure B in $\S 90.309$. For
heights of more than 152 meters (500 feet) above average terrain, the distance to the radio path horizon will be calculated assuming smooth earth. If the distance so determined equals or exceeds the distance to the Grade B contour of a co-channel TV station (Grade B contour defined in §73.683(a) of this chapter), an authorization will not be granted unless it can be shown that actual terrain considerations are such as to provide the desired protection at the Grade B contour, or that the effective radiated power will be further reduced so that, assuming free space attenuation, the desired protection at the Grade B contour will be achieved.
(c) Mobile units and control stations operating on the frequencies available for land mobile use in any given urbanized area shall afford protection to cochannel and adjacent channel television stations in accordance with the values set forth in table C in $\S 90.309$ and paragraph (d) of this section except for channel 15 in New York, NY, and Cleveland, OH , and channel 16 in Detroit, MI, where protection will be in accordance with the values set forth in table D in §90.309 and paragraph (d) of this section.
(d) The minimum distance between a land mobile base station which has associated mobile units and a protected adjacent channel television station is 145 km (90 miles).
(e) The television stations to be protected (co-channel, adjacent channel, IM, and IF) in any given urbanized area, in accordance with the provisions of paragraphs (a), (b), (c), and (d) of this section, are identified in the Commission's publication 'TV stations to be considered in the preparation of Applications for Land Mobile Facilities in the Band $470-512 \mathrm{MHz}$.' ' The publication is available at the offices of the Federal Communications Commission in Washington, DC or upon the request of interested persons.

[72 FR 35197, June 27, 2007]

§90.309 Tables and figures.

(a) Directions for using the tables. (1) Using the method specified in $\S 1.958$ of this chapter, determine the distances between the proposed land mobile base station and the protected co-channel
television station and between the proposed land mobile base station and the protected adjacent channel television station. If the exact mileage does not appear in table A for protected cochannel television stations (or table B for channel 15 in New York and Cleveland and channel 16 in Detroit) or table E for protected adjacent channel television stations, the next lower mileage separation figure is to be used.
(2) Entering the proper table at the mileage figure found in paragraph (a)(1) of this section, find opposite, a selection of powers that may be used for antenna heights ranging from 15 m (50 ft) to 152.5 m (500 ft) (AAT). If the exact antenna height proposed for the land mobile base station does not appear in the proper table, use the power figure beneath the next greater antenna height.
(3) The lowest power found using the tables mentioned in paragraphs (a)(1) and (a)(2) of this section is the maximum power that may be employed by the proposed land mobile base station.
(4) In determining the average elevation of the terrain, the elevations between 3.2 kilometers (2 miles) and 16 kilometers (10 miles) from the antenna site are employed. Profile graphs shall be drawn for a minimum of eight radials beginning at the antenna site and extending 16 kilometers (10 miles). The radials should be drawn starting with true north. At least one radial should be constructed in the direction of the nearest co-channel and adjacent channel UHF television stations. The profile graph for each radial shall be plotted by contour intervals of from 12.2 meters (40 feet) to 30.5 meters (100
feet) and, where the data permits, at least 50 points of elevation (generally uniformly spaced) should be used for each radial. For very rugged terrain, 61 meters (200 feet) to 122 meters (400 foot) contour intervals may be used. Where the terrain is uniform or gently sloping, the smallest contour interval indicated on the topographic chart may be used. The average elevation of the 12.8 kilometer (8 mile) distance between 3.2 kilometers (2 miles) and 16 kilometers (10 miles) from the antenna site should be determined from the profile graph for each radial. This may be obtained by averaging a large number of equally spaced points, by using a planimeter, or by obtaining the median elevation (that exceeded by 50 percent of the distance) in sectors and averaging those values. In the preparation of the profile graphs, the elevation or contour intervals may be taken from U.S. Geological Survey Topographic Maps, U.S. Army Corps of Engineers Maps, or Tennessee Valley Authority Maps. Maps with a scale of $1: 250,000$ or larger (such as $1: 24,000$) shall be used. Digital Terrain Data Tapes, provided by the National Cartographic Institute, U.S. Geologic Survey, may be utilized in lieu of maps, but the number of data points must be equal to or exceed that specified above. If such maps are not published for the area in question, the next best topographic information should be used.
(5) Applicants for base stations in the Miami, FL, urbanized area may, in lieu of calculating the height of average terrain, use 3 m (10 ft) as the average terrain height.

Table A—Base Station-Cochannel Frequencies (50 dB Protection) Maximum Effective Radiated Power (ERP) ${ }^{1}$

Distance in kilometers (miles): ${ }^{2}$	Antenna height in meters (feet) (AAT)									
	15 (50)	$\begin{gathered} 30.5 \\ (100) \end{gathered}$	45 (150)	61 (200)	76 (250)	$\begin{array}{r} 91.5 \\ (300) \end{array}$	$\begin{gathered} 106 \\ (350) \end{gathered}$	$\begin{gathered} 122 \\ (400) \end{gathered}$	$\begin{gathered} 137 \\ (450) \end{gathered}$	$\begin{aligned} & 152.5 \\ & (500) \end{aligned}$
260 (162)	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
257 (160)	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	800
249 (155) ...	1,000	1,000	1,000	1,000	1,000	875	775	700	625	575
241 (150)	1,000	1,000	950	775	725	625	550	500	450	400
233 (145)	850	750	650	575	500	440	400	350	320	300
225 (140)	600	575	475	400	350	300	275	250	230	225
217 (135)	450	400	335	300	255	240	200	185	165	150
209 (130)	350	300	245	200	185	160	145	125	120	100
201 (125)	225	200	170	150	125	110	100	90	80	75
193 (120)	175	150	125	105	90	80	70	60	55	50

${ }^{1}$ The effective radiated power (ERP) and antenna height above average terrain (AAT) shall not exceed the values given in this table.
${ }^{2}$ At this distance from transmitter site of protected UHF television station.
table B—Base Station-Cochannel Frequencies (40 dB Protection) Maximum Effective Radiated Power (ERP) ${ }^{1}$

${ }^{1}$ The effective radiated power (ERP) and antenna height above average terrain shall not exceed the values given in this table. ${ }^{2}$ At this distance from the transmitter site of protected UHF television station.

table E—Base Station Adjacent Channel Frequencies Maximum Effective Radiated Power (ERP) ${ }^{1}$

Distance in kilometers (miles): ${ }^{23}$	Antenna height in meters (feet) (AAT)									
	15 (50)	$\begin{gathered} 30.5 \\ (100) \end{gathered}$	45 (150)	61 (200)	76 (250)	$\begin{gathered} 91.5 \\ (300) \end{gathered}$	$\begin{gathered} 106 \\ (350) \end{gathered}$	$\begin{gathered} 122 \\ (400) \end{gathered}$	$\begin{gathered} 137 \\ (450) \end{gathered}$	$\begin{aligned} & 152.5 \\ & (500) \end{aligned}$
108 (67)	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
106 (66)	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	750
104 (65)	1,000	1,000	1,000	1,000	1,000	1,000	1,000	825	650	600
103 (64)	1,000	1,000	1,000	1,000	1,000	1,000	775	625	500	400
101 (63)	1,000	1,000	1,000	1,000	1,000	650	450	325	325	225
99 (62)	1,000	1,000	1,000	1,000	525	375	250	200	150	125
98 (61)	1,000	1,000	700	450	250	200	125	100	75	50
96 (60)	1,000	1,000	425	225	125	100	75	50		

${ }^{1}$ The effective radiated power (ERP) and antenna height above average terrain (AAT) shall not exceed the values given in this
${ }_{2}$ At this distance from transmitter site of protected UHF television station.
${ }^{3}$ The minimum distance is 145 km (90 miles) where there are mobile units associated with the base station. See sec. 90.307(d).

Table "F"-Decibel Reduction/Power
 Equivalents

dB reduction below 1 kW	ERP permitted (figures rounded)
1	795
2.	630
3 ...	500
4	40

Table "F"-Decibel Reduction/Power Equivalents-Continued

dB reduction below 1 kW	ERP permitted (figures rounded)
5	315
6	250
7	200
8	160

§90.309

| TABLE "F"—DECIBEL REDUCTION/POWER | |
| :---: | ---: | ---: |
| EQUIVALENTS—Continued | |$|$

47 CFR Ch. I (10-1-14 Edition)

(b) Directions for Using the Figures. (1) Determine antenna height above average terrain. (According to §90.309(a)(4).)
(2) Locate this value on the antenna height axis.
(3) Determine the separation between the LM antenna site and the nearest protected co-channel TV station. (According to §73.611.)
(4) Draw a vertical line to intersect the LM/TV separation curve at the distance determined in step 3 above. For distances not shown in the graph use linear interpolation.
(5) From the intersection of the LM/ TV separation curve draw a horizontal line to the power reduction scale.
(6) The power reduction in dB determines the reduction below 1 kW that must be achieved.
(7) See table F for $\mathrm{dB} /$ power equivalents.

(Section 0.231 (d) of the Commission's Rules and secs. 4(i) and 303 of the Communications Act, as amended)
[43 FR 54791, Nov. 22, 1978, as amended at 49 FR 36107, Sept. 14, 1984; 49 FR 49837, Dec. 17, 1984; 58 FR 44958, Aug. 25, 1993; 70 FR 19312, Apr. 13, 2005; 72 FR 35197, June 27, 2007]

