(c) Operation within the band 76.0-77.0 GHz is restricted to vehicle-mounted field disturbance sensors used as vehicle radar systems and to fixed radar systems used at airport locations for foreign object debris detection on runways and for monitoring aircraft as well as service vehicles on taxiways and other airport vehicle service areas that have no public vehicle access. The transmission of additional information, such as data, is permitted provided the primary mode of operation is as a field disturbance sensor. Operation under the provisions of this section is not permitted on aircraft or satellites.

(d) The radiated emission limits within the band 76.0–77.0 GHz are as follows:

(1) The average power density of any emission within the bands specified in this section shall not exceed 88 μ W/cm² at a distance of 3 meters from the exterior surface of the radiating structure (average EIRP of 50 dBm).

(2) The peak power density of any emission within the band 76–77 GHz shall not exceed 279 $\mu W/cm^2$ at a distance of 3 meters from the exterior surface of the radiating structure (peak EIRP of 55 dBm).

(e) The power density of any emissions outside the operating band shall consist solely of spurious emissions and shall not exceed the following:

(1) Radiated emissions below 40 GHz shall not exceed the general limits in §15.209.

(2) Radiated emissions outside the operating band and between 40 GHz and 200 GHz shall not exceed the following:

(i) For field disturbance sensors operating in the band 46.7–46.9 GHz: 2 pW/ $\rm cm^2$ at a distance of 3 meters from the exterior surface of the radiating structure.

(ii) For field disturbance sensors operating in the band 76–77 GHz: 600 pW/ $\rm cm^2$ at a distance of 3 meters from the exterior surface of the radiating structure.

(3) For radiated emissions above 200 GHz from field disturbance sensors operating in the 76–77 GHz band: the power density of any emission shall not exceed 1000 pW/cm² at a distance of 3 meters from the exterior surface of the radiating structure.

47 CFR Ch. I (10–1–14 Edition)

(4) For field disturbance sensors operating in the 76–77 GHz band, the spectrum shall be investigated up to 231 GHz.

(f) Fundamental emissions must be contained within the frequency bands specified in this section during all conditions of operation. Equipment is presumed to operate over the temperature range -20 to +50 degrees Celsius with an input voltage variation of 85% to 115% of rated input voltage, unless justification is presented to demonstrate otherwise.

(g) Regardless of the power density levels permitted under this section, devices operating under the provisions of this section are subject to the radiofrequency radiation exposure requirements specified in §§1.1307(b), 2.1091 and 2.1093 of this chapter, as appropriate. Applications for equipment authorization of devices operating under this section must contain a statement confirming compliance with these requirements for both fundamental emissions and unwanted emissions. Technical information showing the basis for this statement must be submitted to the Commission upon request.

[77 FR 48102, Aug. 13, 2012]

§ 15.255 Operation within the band 57– 64 GHz.

(a) Operation under the provisions of this section is not permitted for the following products:

(1) Equipment used on aircraft or satellites.

(2) Field disturbance sensors, including vehicle radar systems, unless the field disturbance sensors are employed for fixed operation. For the purposes of this section, the reference to fixed operation includes field disturbance sensors installed in fixed equipment, even if the sensor itself moves within the equipment.

(b) Within the 57–64 GHz band, emission levels shall not exceed the following equivalent isotropically radiated power (EIRP):

(1) Products other than fixed field disturbance sensors shall comply with one of the following emission limits, as measured during the transmit interval:

(i) Except as indicated in paragraph (b)(1)(ii) of this section, the average power of any emission shall not exceed

Federal Communications Commission

40 dBm and the peak power of any emission shall not exceed 43 dBm.

(ii) For transmitters located outdoors, the average power of any emission shall not exceed 82 dBm minus 2 dB for every dB that the antenna gain is less than 51 dBi. The peak power of any emission shall not exceed 85 dBm minus 2 dB for every dB that the antenna gain is less than 51 dBi. The provisions of \$15.204(c)(2) and (c)(4) of this part that permit the use of different antennas of the same type and of equal or less directional gain do not apply to intentional radiator systems operating under this provision. In lieu thereof, intentional radiator systems shall be certified using the specific antenna(s) with which the system will be marketed and operated. Compliance testing shall be performed using the highest gain and the lowest gain antennas for which certification is sought and with the intentional radiator operated at its maximum available output power level. The responsible party, as defined in §2.909 of this chapter, shall supply a list of acceptable antennas with the application for certification.

(2) For fixed field disturbance sensors that occupy 500 MHz or less of bandwidth and that are contained wholly within the frequency band 61.0–61.5 GHz, the average power of any emission, measured during the transmit interval, shall not exceed 40 dBm, and the peak power of any emission shall not exceed 43 dBm. In addition, the average power of any emission outside of the 61.0–61.5 GHz band, measured during the transmit interval, but still within the 57–64 GHz band, shall not exceed 10 dBm, and the peak power of any emission shall not exceed 13 dBm.

(3) For fixed field disturbance sensors other than those operating under the provisions of paragraph (b)(2) of this section, the peak transmitter conducted output power shall not exceed -10 dBm and the peak EIRP level shall not exceed 10 dBm.

(4) The peak power shall be measured with an RF detector that has a detection bandwidth that encompasses the 57-64 GHz band and has a video bandwidth of at least 10 MHz. The average emission levels shall be calculated based on the measured peak levels, over the actual time period during which transmission occurs. Measurement procedures that have been found to be acceptable to the Commission in accordance with §2.947 of this chapter may be used to demonstrate compliance.

(c) Limits on spurious emissions:

(1) The power density of any emissions outside the 57–64 GHz band shall consist solely of spurious emissions.

(2) Radiated emissions below 40 GHz shall not exceed the general limits in §15.209.

(3) Between 40 GHz and 200 GHz, the level of these emissions shall not exceed 90 pW/cm^2 at a distance of 3 meters.

(4) The levels of the spurious emissions shall not exceed the level of the fundamental emission.

(d) Only spurious emissions and transmissions related to a publicly-accessible coordination channel, whose purpose is to coordinate operation between diverse transmitters with a view towards reducing the probability of interference throughout the 57–64 GHz band, are permitted in the 57–57.05 GHz band.

NOTE TO PARAGRAPH (d): The 57–57.05 GHz is reserved exclusively for a publicly-accessible coordination channel. The development of standards for this channel shall be performed pursuant to authorizations issued under part 5 of this chapter.

(e) Except as specified paragraph (e)(1) of this section, the peak transmitter conducted output power shall not exceed 500 mW. Depending on the gain of the antenna, it may be necessary to operate the intentional radiator using a lower peak transmitter output power in order to comply with the EIRP limits specified in paragraph (b) of this section.

(1) Transmitters with an emission bandwidth of less than 100 MHz must limit their peak transmitter conducted output power to the product of 500 mW times their emission bandwidth divided by 100 MHz. For the purposes of this paragraph, emission bandwidth is defined as the instantaneous frequency range occupied by a steady state radiated signal with modulation, outside which the radiated power spectral density never exceeds 6 dB below the maximum radiated power spectral density in the band, as measured with a 100 kHz resolution bandwidth spectrum analyzer. The center frequency must be stationary during the measurement interval, even if not stationary during normal operation (e.g., for frequency hopping devices).

(2) Peak transmitter conducted output power shall be measured with an RF detector that has a detection bandwidth that encompasses the 57-64 GHz band and that has a video bandwidth of at least 10 MHz. Measurement procedures that have been found to be acceptable to the Commission in accordance with §2.947 of this chapter may be used to demonstrate compliance.

(3) For purposes of demonstrating compliance with this paragraph, corrections to the transmitter conducted output power may be made due to the antenna and circuit loss.

(f) Frequency stability. Fundamental emissions must be contained within the frequency bands specified in this section during all conditions of operation. Equipment is presumed to operate over the temperature range -20 to +50 degrees Celsius with an input voltage variation of 85% to 115% of rated input voltage, unless justification is presented to demonstrate otherwise.

(g) Regardless of the power density levels permitted under this section, devices operating under the provisions of this section are subject to the radiofrequency radiation exposure requirements specified in §§1.1307(b), 2.1091 and 2.1093 of this chapter, as appropriate. Applications for equipment authorization of devices operating under this section must contain a statement confirming compliance with these requirements for both fundamental emissions and unwanted emissions. Technical information showing the basis for this statement must be submitted to the Commission upon request.

(h) Any transmitter that has received the necessary FCC equipment authorization under the rules of this chapter may be mounted in a group installation for simultaneous operation with one or more other transmitter(s) that have received the necessary FCC equipment authorization, without any additional equipment authorization. However, no transmitter operating under the provisions of this section may be equipped with external phase-locking 47 CFR Ch. I (10–1–14 Edition)

inputs that permit beam-forming arrays to be realized.

[63 FR 42279, Aug. 7, 1998, as amended at 66 FR 7409, Jan. 23, 2001; 68 FR 68547, Dec. 9, 2003; 78 FR 59850, Sept. 30, 2013]

§15.256 Operation of level probing radars within the bands 5.925-7.250 GHz, 24.05-29.00 GHz, and 75-85 GHz.

(a) Operation under this section is limited to level probing radar (LPR) devices.

(b) LPR devices operating under the provisions of this section shall utilize a dedicated or integrated transmit antenna, and the system shall be installed and maintained to ensure a vertically downward orientation of the transmit antenna's main beam.

(c) LPR devices operating under the provisions of this section shall be installed only at fixed locations. The LPR device shall not operate while being moved, or while inside a moving container.

(d) Hand-held applications are prohibited.

(e) Marketing to residential consumers is prohibited.

(f) The fundamental bandwidth of an LPR emission is defined as the width of the signal between two points, one below and one above the center frequency, outside of which all emissions are attenuated by at least 10 dB relative to the maximum transmitter output power when measured in an equivalent resolution bandwidth.

(1) The minimum fundamental emission bandwidth shall be 50 MHz for LPR operation under the provisions of this section.

(2) LPR devices operating under this section must confine their fundamental emission bandwidth within the 5.925–7.250 GHz, 24.05–29.00 GHz, and 75–85 GHz bands under all conditions of operation.

(g) Fundamental emissions limits. (1) All emission limits provided in this section are expressed in terms of Equivalent Isotropic Radiated Power (EIRP).

(2) The EIRP level is to be determined from the maximum measured power within a specified bandwidth.