Federal Communications Commission

paragraph (a) of this section, may be permitted to operate: Provided, That an adequate showing is made pursuant to §76.7 which establishes that the public interest is benefited. In such instances, the Commission may prescribe special technical requirements to ensure that subscribers to such systems are provided with an equivalent level of good quality service.

NOTE 1: Local franchising authorities of systems serving fewer than 1000 subscribers may adopt standards less stringent than those in §76.605(a). Any such agreement shall be reduced to writing and be associated with the system's proof-of-performance records.

NOTE 2: For systems serving rural areas as defined in §76.5, the system may negotiate with its local franchising authority for standards less stringent than those in §§76.605(a)(3), 76.605(a)(7), 76.605(a)(8), 76.605(a)(10) and 76.605(a)(11). Any such agreement shall be reduced to writing and be associated with the system's proof-of-performance records.

NOTE 3: The requirements of this section shall not apply to devices subject to the TV interface device rules under part 15 of this chapter.

NOTE 4: Should subscriber complaints arise from a system failing to meet \$76.605(a)(6)prior to December 30, 1999, the cable operator will be required to provide a converter that will allow the system to meet the standard immediately at the complaining subscriber's terminal. Further, should the problem be found to be system-wide, the Commission may order all converters on the system be changed to meet the standard.

NOTE 5: Should subscriber complaints arise from a system failing to meet \$76.605(a)(10), the cable operator will be required to remedy the complaint and perform test measurements on \$76.605(a)(10) containing the full number of channels as indicated in \$76.601(b)(2) at the complaining subscriber's terminal. Further, should the problem be found to be system-wide, the Commission may order that the full number of channels as indicated in \$76.601(b)(2) be tested at all required locations for future proof-of-performance tests.

NOTE 6: No State or franchising authority may prohibit, condition, or restrict a cable system's use of any type of subscriber equipment or any transmission technology.

[37 FR 3278, Feb. 12, 1972]

EDITORIAL NOTE: FOR FEDERAL REGISTER citations affecting §76.605 see the List of CFR Sections Affected, which appears in the Finding Aids section of the printed volume and on GPO Access.

§76.606 Closed captioning.

(a) As of June 30, 1992, the operator of each cable television system shall not take any action to remove or alter closed captioning data contained on line 21 of the vertical blanking interval.

(b) As of July 1, 1993, the operator of each cable television system shall deliver intact closed captioning data contained on line 21 of the vertical blanking interval, as it arrives at the headend or from another origination source, to subscriber terminals and (when so delivered to the cable system) in a format that can be recovered and displayed by decoders meeting §15.119 of this chapter.

[57 FR 11003, Apr. 1, 1992]

§76.609 Measurements.

(a) Measurements made to demonstrate conformity with the performance requirements set forth in §§76.601 and 76.605 shall be made under conditions which reflect system performance during normal operations, including the effect of any microwave relay operated in the Cable Television Relay (CARS) Service intervening between pickup antenna and the cable distribution network. Amplifiers shall be operated at normal gains, either by the insertion of appropriate signals or by manual adjustment. Special signals inserted in a cable television channel for measurement purposes should be operated at levels approximating those used for normal operation. Pilot tones, auxiliary or substitute signals, and nontelevision signals normally carried on the cable television system should be operated at normal levels to the extent possible. Some exemplary, but not mandatory, measurement procedures are set forth in this section.

(b) When it may be necessary to remove the television signal normally carried on a cable television channel in order to facilitate a performance measurement, it will be permissible to disconnect the antenna which serves the channel under measurement and to substitute therefor a matching resistance termination. Other antennas and inputs should remain connected and normal signal levels should be maintained on other channels.

§76.609

(c) As may be necessary to ensure satisfactory service to a subscriber, the Commission may require additional tests to demonstrate system performance or may specify the use of different test procedures.

(d) The frequency response of a cable television channel may be determined by one of the following methods, as appropriate:

(1) By using a swept frequency or a manually variable signal generator at the sending end and a calibrated attenuator and frequency-selective voltmeter at the subscriber terminal; or

(2) By using either a multiburst generator or vertical interval test signals and either a modulator or processor at the sending end, and by using either a demodulator and either an oscilloscope display or a waveform monitor display at the subscriber terminal.

(e) System noise may be measured using a frequency-selective voltmeter (field strength meter) which has been suitably calibrated to indicate rms noise or average power level and which has a known bandwidth. With the system operating at normal level and with a properly matched resistive termination substituted for the antenna, noise power indications at the subscriber terminal are taken in successive increments of frequency equal to the bandwidth of the frequency-selective voltmeter, summing the power indications to obtain the total noise power present over a 4 MHz band centered within the cable television channel. If it is established that the noise level is constant within this bandwidth, a single measurement may be taken which is corrected by an appropriate factor representing the ratio of 4 MHz to the noise bandwidth of the frequency-selective voltmeter. If an amplifier is inserted between the frequency-selective voltmeter and the subscriber terminal in order to facilitate this measurement, it should have a bandwidth of at least 4 MHz and appropriate corrections must be made to account for its gain and noise figure. Alternatively, measurements made in accordance with the NCTA Recommended Practices for Measurements on Cable Television Systems, 2nd edi47 CFR Ch. I (10–1–10 Edition)

tion, November 1989, on noise measurement may be employed.

(f) The amplitude of discrete frequency interfering signals within a cable television channel may be determined with either a spectrum analyzer or with a frequency-selective voltmeter (field strength meter), which instruments have been calibrated for adequate accuracy. If calibration accuracy is in doubt, measurements may be referenced to a calibrated signal generator, or a calibrated variable attenuator, substituted at the point of measurement. If an amplifier is used between the subscriber terminal and the measuring instrument, appropriate corrections must be made to account for its gain.

(g) The terminal isolation between any two terminals in the cable television system may be measured by applying a signal of known amplitude to one terminal and measuring the amplitude of that signal at the other terminal. The frequency of the signal should be close to the midfrequency of the channel being tested. Measurements of terminal isolation are not required when either:

(1) The manufacturer's specifications for subscriber tap isolation based on a representative sample of no less than 500 subscribers taps or

(2) Laboratory tests performed by or for the operator of a cable television system on a representative sample of no less than 50 subscriber taps, indicates that the terminal isolation standard of 76.605(a)(9) is met.

To demonstrate compliance with §76.605(a)(9), the operator of a cable television system shall attach either such manufacturer's specifications or laboratory measurements as an exhibit to each proof-of-performance record.

(h) Measurements to determine the field strength of the signal leakage emanated by the cable television system shall be made in accordance with standard engineering procedures. Measurements made on frequencies above 25 MHz shall include the following:

(1) A field strength meter of adequate accuracy using a horizontal dipole antenna shall be employed.

(2) Field strength shall be expressed in terms of the rms value of synchronizing peak for each cable television

Federal Communications Commission

channel for which signal leakage can be measured.

(3) The resonant half wave dipole antenna shall be placed 3 meters from and positioned directly below the system components and at 3 meters above ground. Where such placement results in a separation of less than 3 meters between the center of the dipole antenna and the system components, or less than 3 meters between the dipole and ground level, the dipole shall be repositioned to provide a separation of 3 meters from the system components at a height of 3 meters or more above ground.

(4) The horizontal dipole antenna shall be rotated about a vertical axis and the maximum meter reading shall be used.

(5) Measurements shall be made where other conductors are 3 or more meters (10 or more feet) away from the measuring antenna.

(i) For systems using cable traps and filters to control the delivery of specific channels to the subscriber terminal, measurements made to determine compliance with §76.605(a) (5) and (6) may be performed at the location immediately prior to the trap or filter for the specific channel. The effects of these traps or filters, as certified by the system engineer or the equipment manufacturer, must be attached to each proof-of-performance record.

(j) Measurements made to determine the differential gain, differential phase and the chrominance-luminance delay inequality (chroma delay) shall be made in accordance with the NCTA Recommended Practices for Measurements on Cable Television Systems, 2nd edition, November 1989, on these parameters.

[37 FR 3278, Feb. 12, 1972, as amended at 37
FR 13867, July 14, 1972; 41 FR 10067, Mar. 9, 1976; 42 FR 21782, Apr. 29, 1977; 49 FR 45441, Nov. 16, 1984; 57 FR 11004, Apr. 1, 1992; 57 FR 61011, Dec. 23, 1992; 58 FR 44952, Aug. 25, 1993]

§76.610 Operation in the frequency bands 108–137 and 225–400 MHz scope of application.

The provisions of \$ 76.605(a)(12), 76.611, 76.612, 76.613, 76.614, 76.616, 76.617, 76.1803 and 76.1804 are applicable to all MVPDs (cable and non-cable) transmitting carriers or other signal components carried at an average power level equal to or greater than 10^{-4} watts across a 25 kHz bandwidth in any 160 microsecond period, at any point in the cable distribution system in the frequency bands 108–137 and 225–400 MHz for any purpose. Exception: Non-cable MVPDs serving less than 1000 subscribers and less than 1000 units do not have to comply with §76.1803.

[69 FR 57862, Sept. 28, 2004]

§76.611 Cable television basic signal leakage performance criteria.

(a) No cable television system shall commence or provide service in the frequency bands 108–137 and 225–400 MHz unless such systems is in compliance with one of the following cable television basic signal leakage performance criteria:

(1) prior to carriage of signals in the aeronautical radio bands and at least once each calendar year, with no more than 12 months between successive tests thereafter, based on a sampling of at least 75% of the cable strand, and including any portion of the cable system which are known to have or can reasonably be expected to have less leakage integrity than the average of the system, the cable operator demonstrates compliance with a cumulative signal leakage index by showing either that (i) 10 log I_{3000} is equal to or less than $-7 \mbox{ or (ii)} 10 \mbox{ log } I_{00} \mbox{ is equal to}$ or less than 64, using one of the following formula:

$$I_{3000} = \frac{1}{0} \sum_{i=1}^{n} \frac{E_i^2}{R_i^2},$$
$$I_{\infty} = \frac{1}{0} \sum_{i=1}^{n} E_i^2,$$

where:

$$R_i^2 = r_i^2 + (3000)^2$$

- $r_{\rm i}$ is the distance (in meters) between the leakage source and the center of the cable television system;
- θ is the fraction of the system cable length actually examined for leakage sources and is equal to the strand kilometers (strand miles) of plant tested divided by the total strand kilometers (strand miles) in the plant;