§ 2.1049 Measurements required: Occupied bandwidth.

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured under the following conditions as applicable:

- (a) Radiotelegraph transmitters for manual operation when keyed at 16 dots per second.
- (b) Other keyed transmitters—when keyed at the maximum machine speed.
- (c) Radiotelephone transmitters equipped with a device to limit modulation or peak envelope power shall be modulated as follows. For single sideband and independent sideband transmitters, the input level of the modulating signal shall be 10 dB greater than that necessary to produce rated peak envelope power.
- (1) Other than single sideband or independent sideband transmitters—when modulated by a 2500 Hz tone at an input level 16 dB greater than that necessary to produce 50 percent modulation. The input level shall be established at the frequency of maximum response of the audio modulating circuit.
- (2) Single sideband transmitters in A3A or A3J emission modes—when modulated by two tones at frequencies of 400 Hz and 1800 Hz (for 3.0 kHz authorized bandwidth), or 500 Hz and 2100 Hz (for 3.5 kHz authorized bandwidth), or 500 Hz and 2400 Hz (for 4.0 kHz authorized bandwidth), applied simultaneously. The input levels of the tones shall be so adjusted that the two principal frequency components of the radio frequency signal produced are equal in magnitude.
- (3) Single sideband transmitters in the A3H emission mode—when modulated by one tone at a frequency of 1500 Hz (for 3.0 kHz authorized bandwidth), or 1700 Hz (for 3.5 kHz authorized bandwidth), or 1900 Hz (for 4.0 kHz authorized bandwidth), the level of which is adjusted to produce a radio frequency signal component equal in magnitude to the magnitude of the carrier in this mode.
- (4) As an alternative to paragraphs (c) (2) and (3) of this section, other tones besides those specified may be

- used as modulating frequencies, upon a sufficient showing of need. However, any tones so chosen must not be harmonically related, the third and fifth order intermodulation products which occur must fall within the -25 dB step of the emission bandwidth limitation curve, the seventh and ninth order products must fall within the -35 dB step of the referenced curve and the eleventh and all higher order products must fall beyond the -35 dB step of the referenced curve.
- (5) Independent sideband transmitters having two channels—when modulated by 1700 Hz tones applied simultaneously to both channels. The input levels of the tones shall be so adjusted that the two principal frequency components of the radio frequency signal produced are equal in magnitude.
- (d) Radiotelephone transmitters without a device to limit modulation or peak envelope power shall be modulated as follows. For single sideband and independent sideband transmitters, the input level of the modulating signal should be that necessary to produce rated peak envelope power.
- (1) Other than single sideband or independent sideband transmitters—when modulated by a 2500 Hz tone of sufficient level to produce at least 85 percent modulation. If 85 percent modulation is unattainable, the highest percentage modulation shall be used.
- (2) Single sideband transmitters in A3A or A3J emission modes—when modulated by two tones at frequencies of 400 Hz and 1800 Hz (for 3.0 kHz authorized bandwidth), or 500 Hz and 2100 Hz (for 3.5 kHz authorized bandwidth), or 500 Hz and 2400 Hz (for 4.0 kHz authorized bandwidth), applied simultaneously. The input levels of the tones shall be so adjusted that the two principal frequency components of the radio frequency signal produced are equal in magnitude.
- (3) Single sideband transmitters in the A3H emission mode—when modulated by one tone at a frequency of 1500 Hz (for 3.0 kHz authorized bandwidth), or 1700 Hz (for 3.5 kHz authorized bandwidth), or 1900 Hz (for 4.0 kHz authorized bandwidth), the level of which is adjusted to produce a radio frequency signal component equal in magnitude

§ 2.1049

to the magnitude of the carrier in this mode.

- (4) As an alternative to paragraphs (d) (2) and (3) of this section, other tones besides those specified may be used as modulating frequencies, upon a sufficient showing of need. However any tones so chosen must not be harmonically related, the third and fifth order intermodulation products which occur must fall within the -25 dB step of the emission bandwidth limitation curve, the seventh and ninth order products must fall within the -35 dB step of the referenced curve and the eleventh and all higher order products must fall beyond the -35 dB step of the referenced curve.
- (5) Independent sideband transmitters having two channels—when modulated by 1700 Hz tones applied simultaneously to both channels. The input levels of the tones shall be so adjusted that the two principal frequency components of the radio frequency signal produced are equal in magnitude.
- (e) Transmitters for use in the Radio Broadcast Services:
- (1) AM broadcast transmitters for monaural operation—when amplitude modulated 85% by a 7,500 Hz input signal
- (2) AM broadcast stereophonic operation—when the transmitter operated under any stereophonic modulation condition not exceeding 100% on negative peaks and tested under the conditions specified in §73.128 in part 73 of the FCC rules for AM broadcast stations.
- (3) FM broadcast transmitter not used for multiplex operation—when modulated 85 percent by a 15 kHz input signal.
- (4) FM broadcast transmitters for multiplex operation under Subsidiary Communication Authorization (SCA)—when carrier is modulated 70 percent by a 15 kHz main channel input signal, and modulated an additional 15 percent simultaneously by a 67 kHz subcarrier (unmodulated).
- (5) FM broadcast transmitter for stereophonic operation—when modulated by a 15 kHz input signal to the main channel, a 15 kHz input signal to

the stereophonic subchannel, and the pilot subcarrier simultaneously. The input signals to the main channel and stereophonic subchannel each shall produce 38 percent modulation of the carrier. The pilot subcarrier should produce 9 percent modulation of the carrier.

- (6) Television broadcast monaural transmitters—when modulated 85% by a 15 kHz input signal.
- (7) Television broadcast stereophonic sound transmitters—when the transmitter is modulated with a 15 kHz input signal to the main channel and the stereophonic subchannel, any pilot subcarrier(s) and any unmodulated auxiliary subcarrier(s) which may be provided. The signals to the main channel and the stereophonic subchannel must be representative of the system being tested and when combined with any pilot subcarrier(s) or other auxiliary subcarriers shall result in 85% deviation of the maximum specified aural carrier deviation.
- (f) Transmitters for which peak frequency deviation (D) is determined in accordance with §2.202(f), and in which the modulating baseband comprises more than 3 independent speech channels—when modulated by a test signal determined in accordance with the following:
- (1) A modulation reference level is established for the characteristic baseband frequency. (Modulation reference level is defined as the average power level of a sinusoidal test signal delivered to the modulator input which provides the specified value of perchannel deviation.)
- (2) Modulation reference level being established, the total rms deviation of the transmitter is measured when a test signal consisting of a band of random noise extending from below 20 kHz to the highest frequency in the baseband, is applied to the modulator input through any preemphasis networks used in normal service. The average power level of the test signal shall exceed the modulation reference level by the number of decibels determined using the appropriate formula in the following table:

Number of message circuits that modulate the transmitter	Number of dB by which the average power $(P_{\rm avg})$ level test signal shall exceed the modulation reference level	Limits of P _{avg} (dBm0)
	To be specified by the equipment manufacturer subject to FCC approval.	
At least 12, but less than 60	X+2 log ₁₀ N _c	X: -2 to +2.6
At least 60, but less than 240	X+4 log ₁₀ N _c	X: -5.6 to -1.0
240 or more	X+10 log ₁₀ N _c	X: -19.6 to -15.0

Where X represents the average power in a message circuit in dBm0; N_c is the number of circuits in the multiplexed message load. $P_{\rm avg}$ shall be selected by the transmitter manufacturer and included with the technical data submitted with the application for type acceptance. (See §2.202(e) in this chapter.)

- (g) Transmitters in which the modulating baseband comprises not more than three independent channels—when modulated by the full complement of signals for which the transmitter is rated. The level of modulation for each channel should be set to that prescribed in rule parts applicable to the services for which the transmitter is intended. If specific modulation levels are not set forth in the rules, the tests should provide the manufacturer's maximum rated condition.
- (h) Transmitters employing digital modulation techniques—when modulated by an input signal such that its amplitude and symbol rate represent the maximum rated conditions under which the equipment will be operated. The signal shall be applied through any filter networks, pseudo-random generators or other devices required in normal service. Additionally, the occupied bandwidth shall be shown for operation with any devices used for modifying the spectrum when such devices are optional at the discretion of the user.
- (i) Transmitters designed for other types of modulation—when modulated by an appropriate signal of sufficient amplitude to be representative of the type of service in which used. A description of the input signal should be supplied.

(Secs. 4, 303, 307, 48 Stat., as amended, 1066, 1082, 1083; 47 U.S.C. 154, 303, 307)

[39 FR 5919, Feb. 15, 1974, as amended at 39 FR 35664, Oct. 3, 1974; 47 FR 13164, Mar. 29, 1982; 48 FR 16493, Apr. 18, 1983; 49 FR 18105, Apr. 27, 1984. Redesignated at 63 FR 36599, July 7, 1998]

§ 2.1051 Measurements required: Spurious emissions at antenna terminals.

The radio frequency voltage or powers generated within the equipment

and appearing on a spurious frequency shall be checked at the equipment output terminals when properly loaded with a suitable artificial antenna. Curves or equivalent data shall show the magnitude of each harmonic and other spurious emission that can be detected when the equipment is operated under the conditions specified in §2.1049 as appropriate. The magnitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be specified.

[39 FR 5919, Feb. 15, 1974. Redesignated and amended at 63 FR 36599, July 7, 1998]

§2.1053 Measurements required: Field strength of spurious radiation.

(a) Measurements shall be made to detect spurious emissions that may be radiated directly from the cabinet, control circuits, power leads, or intermediate circuit elements under normal conditions of installation and operation. Curves or equivalent data shall be supplied showing the magnitude of each harmonic and other spurious emission. For this test, single sideband, independent sideband, and controlled carrier transmitters shall be modulated under the conditions specified in paragraph (c) of §2.1049, as appropriate. For equipment operating on frequencies below 890 MHz, an open field test is normally required, with the measuring instrument antenna located in the far-field at all test frequencies. In the event it is either impractical or impossible to make open field measurements (e.g. a broadcast transmitter installed in a building) measurements will be accepted of the equipment as installed. Such measurements must be accompanied by a description of the site where the measurements were made showing the location of any possible source of reflections which might distort the field